Paired and LIM class homeodomain proteins coordinate differentiation of the C. elegans ALA neuron.
نویسندگان
چکیده
The ancient origin of sleep is evidenced by deeply conserved signaling pathways regulating sleep-like behavior, such as signaling through the Epidermal growth factor receptor (EGFR). In Caenorhabditis elegans, a sleep-like state can be induced at any time during development or adulthood through conditional expression of LIN-3/EGF. The behavioral response to EGF is mediated by EGFR activity within a single cell, the ALA neuron, and mutations that impair ALA differentiation are expected to confer EGF-resistance. Here we describe three such EGF-resistant mutants. One of these corresponds to the LIM class homeodomain (HD) protein CEH-14/Lhx3, and the other two correspond to Paired-like HD proteins CEH-10/Chx10 and CEH-17/Phox2. Whereas CEH-14 is required for ALA-specific gene expression throughout development, the Prd-like proteins display complementary temporal contributions to gene expression, with the requirement for CEH-10 decreasing as that of CEH-17 increases. We present evidence that CEH-17 participates in a positive autoregulatory loop with CEH-14 in ALA, and that CEH-10, in addition to its role in ALA differentiation, functions in the generation of the ALA neuron. Similarly to CEH-17, CEH-10 is required for the posterior migration of the ALA axons, but CEH-14 appears to regulate an aspect of ALA axon outgrowth that is distinct from that of the Prd-like proteins. Our findings reveal partial modularity among the features of a neuronal differentiation program and their coordination by Prd and LIM class HD proteins.
منابع مشابه
The Evolutionarily Conserved LIM Homeodomain Protein LIM-4/LHX6 Specifies the Terminal Identity of a Cholinergic and Peptidergic C. elegans Sensory/Inter/Motor Neuron-Type
The expression of specific transcription factors determines the differentiated features of postmitotic neurons. However, the mechanism by which specific molecules determine neuronal cell fate and the extent to which the functions of transcription factors are conserved in evolution are not fully understood. In C. elegans, the cholinergic and peptidergic SMB sensory/inter/motor neurons innervate ...
متن کاملRegulation of Interneuron Function in the C. elegans Thermoregulatory Pathway by the ttx-3 LIM Homeobox Gene
Neural pathways, which couple temperature-sensing neurons to motor and autonomic outputs, allow animals to navigate away from and adjust metabolism rates in response to the temperature extremes often encountered. ttx-3 is required for the specification of the AIY interneuron in the C. elegans neural pathway that mediates thermoregulation. ttx-3 null mutant animals exhibit the same thermotactic ...
متن کاملA regulatory cascade of three homeobox genes, ceh-10, ttx-3 and ceh-23, controls cell fate specification of a defined interneuron class in C. elegans.
The development of the nervous system requires the coordinated activity of a variety of regulatory factors that define the individual properties of specific neuronal subtypes. We report a regulatory cascade composed of three homeodomain proteins that act to define the properties of a specific interneuron class in the nematode C. elegans. We describe a set of differentiation markers characterist...
متن کاملThe LIM and POU homeobox genes ttx-3 and unc-86 act as terminal selectors in distinct cholinergic and serotonergic neuron types.
Transcription factors that drive neuron type-specific terminal differentiation programs in the developing nervous system are often expressed in several distinct neuronal cell types, but to what extent they have similar or distinct activities in individual neuronal cell types is generally not well explored. We investigate this problem using, as a starting point, the C. elegans LIM homeodomain tr...
متن کاملA competition mechanism for a homeotic neuron identity transformation in C. elegans.
Neuron identity transformations occur upon removal of specific regulatory factors in many different cellular contexts, thereby revealing the fundamental principle of alternative cell identity choices made during nervous system development. One common molecular interpretation of such homeotic cell identity transformations is that a regulatory factor has a dual function in activating genes defini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 137 12 شماره
صفحات -
تاریخ انتشار 2010